
CS 302: Introduction to Programming
in Java

Lectures 17&18

It’s insanely hot. People desperately
need some snowflakes

Static variables Again (class variables)

● Variables unique to the class (all objects of this

type will have access to these variables and

there is only 1 of each variable)

● Different from regular instance variables

● All ojects of this type get their own copies of

the regular instance variables

● Often used for identification of objects

ArrayLists and Objects

● ArrayLists can be a list of objects

ArrayList<BankAccount> accounts = new

ArrayList<BankAccount>();

● Now can call any of the ArrayList methods (.add(), .get(), etc.) on

accounts

● Each index of accounts will be a BankAccount object

accounts.get(0).deposit(100);

Chapter 8

● Grab-bag chapter

● 3 Foci:

● Reading/Writing Files

– Parsing text files

– Navigating directories

● Command Line arguments

● Exception Handling

– Throwing exceptions

– Catching exceptions

● Don't mistake this chapter for being unimportant
(material will show up on the final)

Reading / Writing Text Files

● Use Scanner

● Scanner takes input from whatever you pass it in its
constructor

● Scanner stdIn = new Scanner(System.in);

– System.in is default input (i.e. keyboard) from the
operating system

● File inputFile = new File("input.txt");

● Scanner fileReader = new Scanner(inputFile)

– Can now use familiar scanner methods to parse
inputFile (next, nextLine, nextInt, nextDouble)

The File Object

● Represents a path (not neccessarily a file)

● To instantiate:

● File whatever = new File("path");

● "Path" must be absolute path
("C:\\folder1\\folder2...\\file.extension");

– Exception: the file you want to open is in your Java project

– In this case just give the file name

● Several useful methods (creating files, deleting files, etc.)
- take a look at the Java API

● Can represent a path where no file is yet

● File fileToCreate = new File("newFile.txt");

● fileToCreate.createNewFile();

● Can represent a directory (folder)

Using Files and Scanner - Input

● What does this loop do?

File file = new File("input.txt");

Scanner fileReader = new Scanner(file);

while (in.hasNextLine())

{

 String line = in.nextLine();

 //Do something with line

}

File Output: PrintWriter

● To output data to a file use PrintWriter object

● Can construct in 2 ways:

● PrintWriter out = new PrintWriter("filepath");

● PrintWriter out = new PrintWriter(File file);

● Caution: if file already exists, PrintWriter will

clear it completely before printing anything to it

● If file didn't exist PrintWriter will create it

PrintWriter Example

PrintWriter out = new PrintWriter("out.txt");

out.println("Hello fileoutput world!");

out.print("I can use any of the familiar System.out"

+

 " calls and conventions");

out.println("\nIncluding the escape sequence");

out.close();

Notes on Text input/output

● ALWAYS close your Scanner and PrintWriter objects before
exiting your program

● scannerName.close(); printWriterName.close();

● If you don't, you might lose some data

● FileNotFoundException

● Can be thrown for a variety of reasons such as:

– the file you used to construct your Scanner didn't
exist

– the file you gave your PrintWriter had an illegal name

– you didn't have write permissions to create file

● To fix: add "throws FileNotFoundException" to the
method header in which the file input/output is done

Processing Text Input

● Read a file word by word:

while(in.hasNext())

{

 String word = in.next();

}

● Read a file line by line:

while(in.hasNext())

{

 String line = in.nextLine();

}

Example

Input file:

Mary had a little lamb.

China 1440044605

India 1147995898

United States 31382464

How can parsing be done using word by word or
line by line?

Reading numbers

● Use in.hasNextInt(), in.nextInt(),
in.hasNextDouble(), in.nextDouble() methods:

if (in.hasNextDouble())

{

 double val = in.nextDouble();

}

● NOTE: these methods do NOT consume
anything that follows a number (whitespace or
newline)

Using Numbers and Words

Code:

String country =

in.nextLine();

int population =

in.nextInt();

String nextCountry =

in.nextLine();

What is the value of

nextCountry?

Input file:

China

1330044605

India

1147995898

United States

303824646

Reading Characters

● Can read a single character at a time:

Scanner in = new Scaner("whatever.txt");

in.useDelimiter("");

while(in.hasNext())

{

 char ch = in.next().charAt(0);

 //do something with ch

}

Practice 1
 You have a short poem you made long time ago about Lake

Mendota. One day on a whim, you wanna add line numbers for
each line in the poem.

 Input file:

dusk embraces Lake Mendota

Author: Yinggang Huang

When the golden sun was reflected in the water, the lake was
ignited with sparks which is sooo eye enchanting.

Hordes of ducks were sporting on the lake.

A breeze swept across and then this scene got more dynamic.

Waves and bubbles caused by sailboats danced together forming a
visual rhythm.

This state of harmony was just irresistible; it’s like all these come
back to me again soo naturally, it’s really yesterday once more.

 Write a file named “The Lake of Dreams.txt” with line numbers
added into the same folder as the original file.

Review

● What 2 objects are used for reading from text
files

● What object is used to write to text files

● When giving absolute paths, what do you have
to be careful of?

● If you don't give an absolute path, where does
Java search for the file?

● What must you ALWAYS do when you are
done reading / writing to/from files?

● What excpetion can be thrown when dealing
with File IO

Command Line Arguments

● public static void main(String[] args)

● Before IDE's developers used simple text editors to
write code (think notepad)

● They then used a shell (think cmd from Windows or
Terminal from Mac OS) to compile and run their code
(2 steps)

● You can still do this if you like:

● Compile: javac whatever.java

● Will produce a compiled file called "whatever.class"

● Run: java whatever

● Only works if there is already a "whatever.class"

Command Line Arguments

● Can pass arguments into the main method:

● java whatever -v input.txt

● Here 2 arguments were passed: "-v" and "input.txt"

● Arguments go to the String[] args in the main
method

– String args now contains: ["-v", "input.txt"]

● Can do anything with the args array that you can do
with normal arrays

– Example: check if any arguments were passed in:
if (args.length != 0)

Command Line Arguments - Eclipse

● Can pass in Command Line Arguments even if

you aren't running from a shell

● In Eclipse:

● Run -> Run...

● Select "Arguments" tab

● Enter arguments seperated by spaces

Intro to Exceptions

● Exceptions = special but common error conditions
that arise during runtime

● Two aspects: Detecting and Handling

● So far, our handling has simply been to quit the
program, however we can do much more

● Ex. if we get a FileNotFoundException, why not
prompt the user to enter a different file

● Detecting and Handling excpetions MUST be
done seperately

● Ex. Scanner objects can detect
FileNotFoundExceptions but cannot deal with
them, they simply report it up the hierarchy

Throwing Exceptions

● If you only want to detect exceptions, your job
is easy – just "throw" a new exception object

● The only tricky part is figuring out which type of
exception to throw

● Can create your own excpetions, but Java has
many built in

● See textbook for common exceptions to throw

● If an exception is thrown, it immediately exits
the method (like a return statement)

Throwing Exceptions Example

● What if we tried to delete a contact from our
phonebook that wasn't in the phonebook?

● A "NoSuchElementException" – lets use it

if (!contactsList.contains(contactToDelete))

{

 throw new NoSuchElementException("Contact
" + contactToDelete.getName() " + wasn't in
the phonebook");

}

Catching Exceptions

● All exceptions should be handled somewhere

● If an exception is not caught, your program

will exit and you will get an error message

● To handle exceptions: use try/catch

● Try surrounds code that might throw an

exception

● Catch deals with any exceptions should they

arise

Try/Catch Example

Contact aContact = new Contact("Billy", "Bob", 1234567,
"nowhere");

try {

 phoneBook.remove(aContact);

}

catch(NoSuchElementException e)

{

 System.out.println("Billy Bob wasn't in the phonebook");

}

